
Evidence of Bias in the Production of User Test Lists by

Software Analysts, and Proposed Mitigation Strategy

Leonel Morales
1
, y Arturo Rivera

2

1Universidad Rafael Landívar, Campus Central, Guatemala. 2Escuela de Ingeniería,

Universidad del Istmo, Guatemala.
1lmoralesd@url.edu.gt. 2jarivera@unis.edu.gt.

Abstract. In the absence of sufficient HCI professionals, user test lists are
generally developed by people with intimate knowledge of the software product

in case. It has been seen that this may lead to bias when the language employed

in the lists hints the user on how to perform the tests within the context of the

application. This document presents empirical evidence of such bias and

proposes a strategy to minimize it.

Keywords. Usability, User Tests

1 Introduction

There are abundant references to user tests as one of the most effective methods of

identifying usability issues in software applications [9], [11].

The general practice consists of choosing a representative sample of the users to

run the tests, and hand them a list of tasks developed by an experienced professional.

In our context, however, there is a marked shortage of HCI professionals, so the

production of these lists is generally carried out by people who have in-depth

knowledge of the software application to be tested, with instructions to include tasks

that are representative of what users would normally do with the application. Such a

list, however, will generally include, as we point out in this study, a series of clues

and messages that the person who writes the list is sending surreptitiously to the

participating users, thereby producing results which are biased or incomplete, and

may even hide important issues from the evaluator

Such hints include application domain-specific terminology, distinctions or

artificial classifications that may not be present in the mind of the ordinary user, or

disguised indications that lead the user towards a specific menu option or link. These

would provide information that would not be otherwise available and whose absence

would make system use more difficult.

At first glance this may seem as an inherent limitation of user tests as a usability

assurance technique, particularly because the specialist conducting the tests may not

have enough knowledge about the application or application domain, which is

2 Evidence of Bias in the Production of User Test Lists by Software Analysts, and

Proposed Mitigation Strategy

desirable in order to ensure neutrality, but at the same time may render him or her

incapable of suggesting improvements to such lists.

As explained below, however, it is possible to take preventive and corrective measures

to allow the effort and time invested in user tests yield the expected results.

This study seeks to provide empirical evidence of the issue, hints to identify it, and

advice on how to handle it.

2 Importance of User Test Lists

There is abundant literature on the suitability and good results of user tests, [2], [3],

[8], [9], [10], [11], there are methodological guides for their usage,[4], [6], metrics to

use on tasks, etc., but we found few references regarding the aforementioned problem.

Most studies deal mostly with issues like the number of users required to identify a

given percentage of the issues, the probability that an issue will be identified, the

specific moment within the software life cycle to perform the tests, their contribution

to user-centered design processes and how they compare to other usability assurance

techniques.

Several studies document usability evaluations using user tests for specific

applications, [1], [5], [7], [13], [14], in different domains, some of them web-based,

intranet-oriented, or more traditional desktop applications, usually without emphasis

on how the task lists were developed.

Part of this is due to the diversity of functions and interactions that each application

allows, their orientation, context, target users, etc., which makes the number of

possible approaches to task list development potentially large and the construction

process hardly amenable to generalization.

3 First Indications of Bias in the Development of User Test Lists

from an Academic Setting

During the Software Engineering II course, taught by one of the authors during the

second semester of 2006 at Universidad Rafael Landívar, the main topic was usability

engineering of software applications.

The course presented several usability assurance techniques, and one of the

assignments called for the students to select an application they had worked on, or

were working in, in order to conduct user tests, and filming the test themselves. The

task list that the participants where asked to carry out should be designed by

themselves, and students were only required to present the taped tests to the rest of the

class.

As was to be expected, the results revealed important usability problems, even in

areas where the developers had not even suspected.

The results were also revealing to the instructor, because they showed that, in

general, students had developed lists that made direct referentes to terminology,

functions, buttons, menu items, etc. within the specific application, which evidently

Evidence of Bias in the Production of User Test Lists by Software Analysts,

and Proposed Mitigation Strategy 3

provided artificial aid to users performing the tests, thereby invalidating the test or

making it inefficient.

This behavior led us to wonder if the same problem would arise in the software

industry if professional developers or integrators were writing the task lists for user

tests.

4 Experiment on the Production of User Test Lists in Industry

Several software development companies from the Guatemala Export Software

Commission (Sofex) were invited to participate in an exploratory study on this issue.

In the three companies that volunteered for the study, the authors held meetings

with two-person teams, comprised of a developer and an integrator or analyst. The

authors gave a brief introductory talk about usability, following the “5-e” approach

(effective, efficient, eay to learn, error tolerant, engaging), as proponed by

Quesenbery [12], and told that user tests on a specific application developed by the

company would be performed, giving details about the technique, as well as other

methods such as heuristic evaluation, inspection, direct observation, etc., and

specifying the goals of the test. This was done in order to ensure that the lists would

be written with the same frame of reference from one team to the other, and with

sufficient context to understand the stated purpose.

At no point was it hinted that this was merely an exploratory or academic study,

since this would have influenced the results. Instead, it was agreed with the directors

of the participating companies that, at their option, the process could be continued

with the selection of representative users and the actual performance of the tests.

5 Review of the Produced Lists

Participants were asked to submit their task lists by electronic mail in order to allow

the authors to review them in digital format. Our first finding was that, just as was the

case with students, there were obvious allusions, distinctions and other messages in

the lists.

As an example, one of the lists, related to a CRM application, distinguishes

between “personal” and “company” incidents. This separation may be considered

artificial, as it is introduced by the application, possibly as a result of the classes in the

object model, or the tables in the relational database model, so it may not be justified

to assume that the user knows and identifies them clearly. This would have

introduced an additional degree of complexity if the user attempts to record a

“generic” incident, because he or she would be forced to determine, from the user

interface, that the system makes a distinction between the two types of incidents.

Since this study was merely exploratory, it is not possible to generalize the

findings, or attempt to identify all the possible issues. For illustrative purposes, the

following table shows actual excerpts from the task lists, indicating some of the

deficiencies in them.

4 Evidence of Bias in the Production of User Test Lists by Software Analysts, and

Proposed Mitigation Strategy

Statement in Task List Comments

Creation of personal incidents.

Creation of company incidents.

This suggests that there is a distinction in

the system between two types of

incidents, which may not be natural to

the user. It also does not provide

concrete data for performing the test.

The terminology may be specific to the

application.

Enter a product family.

Enter a product sub-family.

Enter a product sub-sub-family.

Analogous to the previous case, suggests

that there is a finite, three-tier hierarchy,

which always require all three levels. This

may or may not coincide with the users’

expectations or mental model.

Mark the checklist.

Enter the system / Exit the system.

Save changes and close.

These are typically meaningless tasks for

the user, that is, it is not something that

the user seeks to do as part of his or her

job, but rather a necessity imposed by

the use of the system.

Check the time measurement report.

Query income and cost.

The user’s objective will hardly be to

perform a query or report. It is more

likely to be obtaining a specific set of

data, the report or query being the means

(potentially not the only one) to achieve

it. The task statement suggest the path

preferred by the designer.

1. Insert text “xxxx”.

2. Insert text “yyyy”.

3. Add the background image in folder

C:\Carnet.

Besides the fact that the user’s objective

is not inserting the elements, the

suggested order is artificial.

Read messages.

Send messages.

These tasks, besides being a means to an

end, have been expressed in a highly

generic fashion, being meaningless to the

user by themselves, and not providing

the information that may be required to

execute them.

6 Proposed Mitigation Strategy and Results

Considering the aforementioned issues, the authors reflected about a strategy that

might be useful in order to mitigate or even avoid them.

Naturally, an easy approach would be to simply warn the people in charge of

developing the list about the potential consequences of these mistakes, explaining the

need to avoid them and even suggesting better ways to state the tasks. It might be

Evidence of Bias in the Production of User Test Lists by Software Analysts,

and Proposed Mitigation Strategy 5

worthwhile to include some of this in the introductory material for those writing the

test lists. However, there is a potentially large number of defects to avoid, as

suggested by the fact that this scaled-down study yielded so many different types of

issues. This would make the induction process unbearably complex, and generate

confusion by the number of cases to consider. A more general strategy is desirable.

Maybe some of these issues can only be fully solved by the involvement of many

more HCI professionals, who would naturally avoid the aforementioned mistakes.

This, however, is not a viable short term solution, so it is important to seek a more

general approach that minimizes the negative effects of bias.

As a result of the joint reflection of the authors, and borrowing from ideas in one of

the suggested task lists, it was considered that a promising approach would be to ask

the writers to present the tasks as a series of stories or cases, presenting the users with

situations that they are likely to find in real life, emphasizing the context and

objective of task rather than the task itself. The more complete and realistic the

scenario, the greater the chance that the tests would give valid and useful results. For

example, for an ID-issuing application, the task could be specified giving a sample of

the desired design and asking the user to reproduce it within the application.

7 Conclusions and Next Steps

As indicated, the present study has significant limitations regarding the size of the

sample. A wider study is required in order to generalize the results. Additionally, it would

be very important to validate the proposed strategy in order to objectively assess its virtues

and limitations. However, the results so far are promising and justify the continuation of

this work.

Some preliminary conclusions are suggested by this study. First, it was noted that

analysis exhibit a tendency to think in terms of abstract, general cases, while tests

require concreteness and specificity. This could be aggravated by the fact that the

systems for which the task lists were developed fall into the COTS1 category, since

they are intended to appeal to a wider market. This, in time, points to intrinsic

obstacles for this kind of tests to be developed independently (something that would

have been desirable, and is strongly recommended byt some authors, particularly

[10]), which would requiere an HCI specialist for them, something that is not feasible

in the current context. Also, it became evident that the writers possess a conceptual

model [11] of the application that reflects the way in which it was designed, and so

the task lists attempt to impose this model to the user, regardless of the way he or she

perceives daily tasks, thereby negating the purpose of the test.

However, the produced lists do provide evidence of tasks, such as exiting the

application, printing a report or changing the password which, even though artificial,

are widely accepted as a necessity of the application or its environment, and as such

need to be tested.

1 Commercial Off-The Shelf

6 Evidence of Bias in the Production of User Test Lists by Software Analysts, and

Proposed Mitigation Strategy

References

1. Arbildi, I.: Caso de Estudio: Técnicas de Arquitectura de Información Aplicadas al
Desarrollo del Sitio Web de Ibai Intranets. In: El Profesional de la Información. Vol. 13. No.

3. (2004)

2. Baeza-Yates, R., Rivera, C., Velasco, J.: Arquitectura de la Información y Usabilidad en la

Web. In: El Profesional de la Información, Vol. 13, No. 3. (2004)

3. Cover, D.: Usage and Usability Assesment: Library Practices and Concerns. Digital Library

Federation, Council on Library and Information Resources. (2002)
4. Dix, A., Finlay, J., Abowd, G., Beale, R.: Human-Computer Interaction. 2nd edn. Prentice

Hall. (1998)

5. James, R., McDonald, A., McGuire, R.: A Usability Evaluation of a Home Monitoring

System. Symposium on Usable Privacy and Security (SOUPS). (2007)

6. Laurel, B. (ed) : The Art of Human Computer Interface Design. Adison-Wesley. (1990)

7. Marcos, M., Rovira, C.: Evaluación de la Usabilidad en Sistemas de Información Web

Municipales: Metodología de Análisis y Desarrollo. 7mo Congreso ISKO-España. (2005)

415-432

8. Montes de Oca, A.: Arquitectura de Información y Usabilidad: Nociones Básicas para los

Profesionales de la Información. Acimed Vol. 12, No. 4. (2004)

9. Nielsen, J.: Usability 101: Introduction to Usability. In: Jakob Nielsen’s Alertbox, August
25. (2003)

10. Nielsen, J.: Misconceptions About Usability. In: Jakob Nielsen’s Alertbox, September 8.

(2003)

11. Norman,D.: The Design of Everyday Things. Basic Books. (1988)

12. Quesenbery, W.: What Does Usability Mean: Looking Beyond ‘Ease of Use’. Proceedings

of the 48th Annual Conference, Society for Technical Communication. (2001)

13. Whitten, A., Tygar, J.: Why Johnny Can’t Encrypt: A Usability Evaluation of PGP 5.0.

Proceedings of the 8th USENIX Security Symposium. (1999)

14. Withrow, J., Brinck, T., Speredelozzi, A.: Comparative Usability Evaluation for an e-

Government Portal. Diamond Bullet Design Report #U1-00-2. (2000)

